and yielded voltammograms of the type shown in Figure 1. While the cyclic voltammograms exhibit some subtle features, the evidence indicates that the charging process involves the formation of TCNQ- radical anion sites. First, derivative cyclic voltabsorptometry¹⁴ at the 735-nm band, which has been assigned to the TCNQ $^{-}$ monomer species, 15 produced dA/dE curves of the same form as the conventional cyclic voltammograms obtained simultaneously; see Figure 2. Second, reduction of a $(TCNQ)_x$ film (dip-coated on Pt grid) in an ESR cavity by using the intra muros technique^{16,17} yielded a signal (g = 2.0031, $\Delta H_{pp} = 0.4$ mT) that increased in intensity in direct proportion to the charge passed. In addition, the two-step EE process (eq 2) is evident in the voltammograms for which the potential is scanned to more negative values, although repeated cycling past the second wave destroys the film electroactivity. However, if the potential excursions are maintained within the limits of Figure 1, the $(TCNQ)_x$ film retains full electrochemical activity over a period of days. Also, the ESR signal intensity and the voltammetric waves did not decrease when the reduced films were exposed to the laboratory atmosphere.

Similar voltammetric behavior was observed in both NaClO₄ and LiClO₄ electrolytes. In the presence of 0.1 M tetraethylammonium perchlorate, however, the cathodic peak current was significantly attenuated and the corresponding anodic peak was more drawn out than shown in Figure 1. Similar electrolyte effects have been found for donor polymer films. ^{18,19} Thus the (TCNQ)_x reduction process in aqueous electrolytes can be viewed as "cation controlled" and written as an ionic intercalation of cations into the film phase:

$$(TCNQ)_x + xM^+ + xe^- \rightleftharpoons (TCNQ^-M^+)_x$$
 (3)

In this regard, the electrode processes for the $(TCNQ)_x$ films are akin to those observed for TTF-TCNQ "organic metal" electrodes in aqueous media.²⁰ In the presence of 0.5 M NaClO₄ or LiClO₄, chronocoulometric experiments indicate rapid diffusion-controlled charging processes for both reduction and oxidation with Cottrell slopes of 1.2×10^{-3} C cm⁻² s^{-1/2}.

The cyclic voltammograms have several features that indicate slow potential-dependent changes in the film structure and/or uptake of electrolyte that are similar to those observed for TTF polymer films.²¹ Initial potential scans in the negative direction resulted in a narrow cathodic peak (peak width ca. 50 mV), which was replaced by a broader peak (width 90 mV) on subsequent cycles; see Figure 1. Holding the potential at 0.2–0.3 V for 3–5 min restored the film to the original state. Simultaneous absorption measurements at 735 nm demonstrated that a slow oxidation of the radical anion sites occurred on this time scale. In addition, upon repeated cycles, isopotential points²² indicative of a two-state system developed in the multicyclic voltammograms as shown in Figure 1. The causes of this behavior are under further study. In spite of these variations, the total charge accepted by a (TCNQ)_x film remained constant, indicating the overall reversibility of the process.

Acknowledgment. This research was supported by the U.S. Army Research Office (Project No. P-17715-C) and the University of Tennessee.

Registry No. 1-CIC(O)(CH₂)₄C(O)Cl copolymer, 83462-96-8; 1-CIC-(O)(CH₂)₄C(O)Cl repeating unit, 83462-97-9; Pt, 7440-06-4; LiClO₄, 7791-03-9; (TCNQ)_x, 26810-79-7.

Use of Trichlorodimethylethyl as a Protecting Group and Tributylphosphine as a Deprotecting Agent in Oligonucleotide Synthesis

Robert L. Letsinger,* E. Patrick Groody, and Toshiki Tanaka

Department of Chemistry, Northwestern University Evanston, Illinois 60201 Received August 20, 1982

Phosphite triester chemistry¹ provides a means for rapid synthesis of oligonucleotides. In this approach 2,2,2-trichloroethyl¹² and methyl³ have been the groups of choice for protecting P–O internucleoside links, the latter proving particularly useful in syntheses conducted on insoluble supports.⁴ We describe here two developments that simplify some operations and broaden the scope in syntheses of oligonucleotides by the phosphite approach: (1) use of the bulky 2,2,2-trichloro-1,1-dimethylethyl group for protecting P–O; (2) a new reaction of tributylphosphine useful in cleaving trihaloethyl phosphotriesters.

³¹P NMR studies show that 2,2,2-trichloro-1,1-dimethylethyl phosphorodichloridite reacts selectively with 5'-O-protected deoxyribonucleosides at -78 °C in that the first halogen in the dichlorodite is displaced before the second reacts. Consequently, solutions of active nucleoside reagents (1, Chart I) free of dichloridite can be prepared simply by adding a slight excess of the 5'-O-protected nucleoside to Cl₃CC(CH₃)₂OPCl₂ in CH₂Cl₂ or THF in the presence of pyridine at -78 °C. In contrast, CH₃O-PCl₂ is unselective, and Cl₃CCH₂OPCl₂ exhibits only moderate selectivity in reactions carried out under comparable conditions.

The potential of $\text{Cl}_3\text{CC}(\text{CH}_3)_2\text{OPCl}_2$ in synthesis was examined by preparing 2 and 3. Phosphite 2^7 ($^{31}\text{P NMR}$, δ -151.29, -151.02)⁸ was obtained (70%) by reaction of 1 (base = thymine) with excess thymidine in THF-C₅H₅N (-78 \rightarrow 0 °C). Oxidation with I₂-H₂O converted it quantitatively to the corresponding phosphate, 3^7 ($^{31}\text{P NMR}$, δ -10.36, -10.23)⁸ which was relatively stable to alkaline solutions (no reaction in 4 h with NH₄OH at 25 °C).

The stability of the trichlorodimethylethyl phosphotriesters to alkali permits oligonucleotide triester derivatives to be removed from insoluble supports intact, as demonstrated by synthesis of d-(DMTr) $[T_{TCDM}]_n T$, n = 1-5, on a silica support. The procedure of Matteuci and Caruthers^{4a} was adapted to the syringe technique, 4e and Cl₃CC(CH₃)₂OPCl₂ was used in place of CH₃OPCl₂. Aliquots of loaded silica were removed at the end of each cycle and treated with NH₄OH (~23 °C, 3 h) to liberate the oligomers. In each case a dominant spot was observed on reverse-phase TLC^{10} corresponding to the nucleoside triester derivative for that stage $(R_f 0.45, 0.40, 0.35, 0.29, 0.24, 0.22 \text{ for } n = 0-5, \text{ respectively}).$ The hexamer 4 was identical in properties with d-(DMTr)[T_{TCDM}]₅T prepared independently in solution by stepwise condensations of dimer 5 with oligomer blocks, starting with d-T_{TCDM}T(OAc). In confirmation of the structure, successive treatment with zinc and aqueous HOAc converted 4 to d-(Tp)₅T,

⁽¹⁴⁾ Bancroft, E. E.; Sidwell, J. S.; Blount, H. N. Anal. Chem. 1981, 53, 1390

⁽¹⁵⁾ Boyd, R. H.; Phillips, W. D. J. Chem. Phys. 1965, 43, 2927.

⁽¹⁶⁾ Geske, D. H.; Maki, A. H. J. Am. Chem. Soc. 1960, 82, 2671.

⁽¹⁷⁾ Piette, L. H.; Ludwig, P.; Adams, R. N. Anal. Chem. 1962, 34, 916.
(18) Daum, P.; Murray, R. W. J. Phys. Chem. 1981, 85, 389.

⁽¹⁹⁾ Chambers, J. Q.; Kaufman, F. B.; Nichols, K. H., to be published in J. Electroanal. Chem.

 ⁽²⁰⁾ Jaeger, C. D.; Bard, A. J. J. Am. Chem. Soc. 1980, 102, 5435.
 (21) Schroeder, A. H.; Kaufman, F. B. J. Electroanal. Chem. 1980, 113, 209.

⁽²²⁾ Untereker, D. F.; Bruckenstein, S. Anal. Chem. 1972, 44, 1009.

⁽¹⁾ Letsinger, R. L.; Finnan, J. L.; Heavner, G. A.; Lunsford, W. B. J. Am. Chem. Soc. 1975, 97, 3278. Letsinger, R. L.; Lunsford, W. B. Ibid. 1974, 98, 3655.

⁽²⁾ Finnan, J. L.; Varshney, A.; Letsinger, R. L. Nucleic Acids Res., Symp. Ser. 1980, 7, 133. Ogilvie, K. K.; Nemer, M. J. Can. J. Chem. 1980, 58, 1389.

Van Tamelen, E. E.; Daub, S. U. J. Am. Chem. Soc. 1977, 99, 3526.
 (4) (a) Matteucci, M. D.; Caruthers, M. H. Tetrahedron Lett. 1980, 21, 719; J. Am. Chem. Soc. 1981, 103, 3185.
 (b) Ogilivie, K. K.; Nemers, M. J. Tetrahedron Lett. 1980, 21, 4159.
 (c) Alvarado-Urbina, G.; et al. Science (Washington, D.C.) 1981, 270.
 (d) Chow, F.; Kempe, T.; Palm, G. Nucleic Acids Res. 1981, 9, 2807.
 (e) Tanaka, T.; Letsinger, R. L. Ibid. 1982, 10, 3249.

⁽⁵⁾ For preparation, see: Gerrard, W.; Wyville, P. L. Research (London) 1949, 2, 536.

⁽⁶⁾ For a related reagent, see: Eckert, H.; Listl, M.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1978, 17, 361.

⁽⁷⁾ Satisfactory C, H, N analyses were obtained.

⁽⁸⁾ δ is relative to (C₆H₅O)₃PO in THF.

⁽⁹⁾ TCDM refers to the internucleoside 2,2,2-trichloro-1,1-dimethylethyl phospho triester link.

^{(10) 7:3} Me₂CO-H₂O on Whatman MKC₁₈ plates.

Chart I

which was hydrolyzed completely to d-T and d-pT by snake venom phosphodiesterase.

For routine synthesis of oligonucleotides with phosphodiester backbones it is desirable to cleave the P-O protecting groups before removing the oligomers from the insoluble support. Heretofore this has not been possible with trichloroethyl phosphotriesters since neither zinc¹¹ nor radical anions¹² are effective on substrates bound to silica supports. A search for a new reagent for deprotection revealed that tributylphosphine¹³ in DMF-Et₃N at 80 °C converts nucleoside trichloroethyl and trichlorodimethylethyl phosphotriesters efficiently to the corresponding nucleoside phosphotriesters for reactions conducted both in solution and on insoluble supports.

Use of the phosphorochloridite reagents (1) in conjunction with deprotection by Bu₃P is illustrated by the synthesis of d-T₁₆ and d-GCAAATATCATTTT. Reactions were carried out on silica (80 mg, 3 μmol of d-(DMTr)T in a column similar to that previously described.4a Preliminary experiments showed the following sequence to be effective: treatment with (1) 3% Cl₃CCOOH in CH₁NO₂, ^{4e} 2.5 min, (2) pyridine, 2 min, (3) reagent 1 in 3:1 CH₂Cl₂-N-methylimidazole, ¹⁴ 15 min, (4) pyridine, 2 min, (5) I₂ in 40:20:1 THF-pyridine-H₂O or 0.2 M m-chloroperbenzoic acid in CH₂Cl₂-pyridine, 2 min, (6) pyridine, 2 min, (7) CH₃NO₂, 2 min. With this procedure yields averaged above 95% per cycle for addition of a nucleotide unit (trityl cation test). On completion, the loaded silica was heated with 2:1:4 Bu₃P-Et₃N-DMF (80 °C, 3 h) and NH₄OH (50 °C, 12 h). The ammoniacal solutions were evaporated and the products analyzed by HPLC. The chromatographic profiles (Figure 1) show that the efficiency through the synthetic cycles and deprotection steps is good. Samples purified by HPLC and chromatography on silica gel4c were characterized by hydrolysis to the component nucleotides and nucleosides (d-T or d-G) by snake venom phosphodiesterase and, after labeling with ³²P (polynucleotide kinase), by sizing by electrophoresis on a polyacrylamide gel (single spots were obtained corresponding to a hexadecamer for the thymidine derivative and to a tetradecamer for the mixed oligomer).

The ease of preparing the active reagents, high selectivity in reactions, 15 stability of the intermediate triesters, and efficiency in deprotection make this approach promising for routine synthesis of oligonucleotides for studies in molecular biology. In addition,

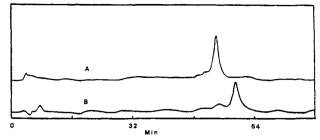


Figure 1. HPLC analysis of reaction mixtures from preparation of (A) d-T₁₆ and (B) d-GCAAATATCATTTT; Whatman Partisil PXS ODS-3 column, starting with 11% CH₃CN, 89% 0.1 M aqueous Et₃NH⁺OAc⁻ and increasing CH₃CN at rate of 0.1%/min.

in combination with procedures utilizing methyl protecting groups for P-O, this chemistry provides flexibility in synthesizing and subsequently modifying oligonucleotides possessing enzyme-resistant sites (i.e., stable triester links) at specified points in phosphodiester chains.

Acknowledgment. This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health (GM10265). Gel electrophoresis was carried out by David D. Miller.

Rhenium(VII) Neopentylidene and Neopentylidyne Complexes¹

D. Scott Edwards and Richard R. Schrock*

Department of Chemistry 6-331 Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received June 25, 1982

In the past several years a variety of d⁰ alkylidene² and alkylidyne3 complexes of Nb, Ta, Mo, and W have been prepared, most of them by a variation of the α -hydrogen abstraction reaction.4 An interesting question is whether as yet unknown Re(VII) alkylidene and alkylidyne complexes can be prepared by using related methods. We report here that they can be, but so far at least one other π -bonding ligand (dianion or trianion) must be present in order for the metal to sustain its relatively high oxidation state.

The starting point in this chemistry is $Re(N-t-Bu)_3(OSiMe_3)$, a compound that can be prepared in high yield from Re₂O₇ and NH(SiMe₃)-t-Bu.⁵ Addition of 4 equiv of gaseous HCl to Re- $(N-t-Bu)_3(OSiMe_3)$ in dichloromethane produces 1 equiv of t-BuNH₃Cl and orange Re(N-t-Bu)₂Cl₃ in >85% yield.⁶ Since Re(N-t-Bu)₂Cl₃ is a monomer in dichloromethane and the tertbutyl groups are equivalent by ¹H and ¹³C NMR, we propose that it is a trigonal bipyramidal species with equatorial imido ligands (cf. other five-coordinate d^0 complexes containing two π -bonding ligands isoelectronic with imido ligands such as Ta- $(CHCMe_3)_2(mesityl)(PMe_3)_2$ and $W(O)(CHCMe_3)(PEt_3)Cl_2$ 8).

⁽¹¹⁾ Eckstein, F.; Rizk, I. Angew. Chem., Int. Ed. Engl. 1967, 6, 695.

⁽¹²⁾ Letsinger, R. L.; Finnan, J. L. J. Am. Chem. Soc. 1975, 97, 7197.

⁽¹³⁾ Other phosphine derivatives, e.g., [(CH₃)₂N]₃P, are also active. (14) N-Methylimidazole accelerates the condensation reaction.

⁽¹⁵⁾ For another means of achieving selectivity see: Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981, 22, 1859.

Multiple Metal-Carbon Bonds. 30. For part 29 see ref 15.
 Schrock, R. R. In "Reactions of Coordinated Ligands"; Braterman, P.

⁽a) Clark, D. N.; Schrock, R. A. II. Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: New York, in press.
(3) (a) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.
(b) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. Ibid. 1981, 103, 3932.
(4) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210.

^{(5) (}a) Nugent, W. A.; Harlow, R. L. J. Chem. Soc., Chem. Commun. 1979, 1105. (b) Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123.

⁽⁶⁾ Anal. Calcd for $ReC_8H_{18}N_2Cl_3$: C, 22.09; H, 4.17. Found: C, 22.15;

⁽⁷⁾ Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 1930.